题目内容
【题目】如图,在直角坐标系中,已知点A(6,0),点B为y轴正半轴上一动点,连接AB,以AB为一边向下作等边△ABC,连接OC,则OC的最小值( )
A.B.C.D.
【答案】B
【解析】
以OA为对称轴作等边△AMN,由“SAS”可证△ANC≌△AMB,可得∠AMB=∠ANC=60°,由直角三角形的性质可求∠AEN=30°,EO= ON=6,则点C在EN上移动,当OC'⊥EN时,OC'有最小值,即可求解.
解:如图,以OA为对称轴作等边△AMN,延长CN交x轴于E,
∵△ABC是等边三角形,△AMN是等边三角形,
∴AM=AN,AB=AC,∠MAN=∠BAC,∠AMN=60°=∠ANM, ∴∠BAM=∠CAN,
∴△ANC≌△AMB(SAS),
∴∠AMB=∠ANC=60°,
∴∠ENO=60°,
∵AO=6,∠AMB=60°,AO⊥BO,
∴MO=NO=
∵∠ENO=60°,∠EON=90°,
∴∠AEN=30°,EO=ON=6,
∴点C在EN上移动,
∴当OC'⊥EN时,OC'有最小值,
此时,O'C=EO=3,
故选:B.
练习册系列答案
相关题目