题目内容

如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.求证:CF=BF.
证明:连接AC,如图,
∵C是弧BD的中点,
∴∠DBC=∠BAC,
在三角形ABC中,∠ACB=90°,CE⊥AB,
∴∠BCE+∠ECA=∠BAC+∠ECA=90°,
∴∠BCE=∠BAC,
又C是弧BD的中点,
∴∠DBC=∠CDB,
∴∠BCE=∠DBC,
∴CF=BF.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网