题目内容

【题目】如图,己知数轴上点A表示的数为8,B是数轴上一点,且AB=22.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.

(1)写出数轴上点B表示的数____,点P表示的数____(用含t的代数式表示);

(2)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(列一元一次方程解应用题)

(3)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问 秒时P、Q之间的距离恰好等于2(直接写出答案)

(4)思考在点P的运动过程中,若MAP的中点,NPB的中点.线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.

【答案】(1)-14,8-4t(2)点P运动11秒时追上点Q(3)或4(4)线段MN的长度不发生变化,都等于11

【解析】

(1)根据AB长度即可求得BO长度,根据t即可求得AP长度,即可解题;

(2)点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC-BC=AB,列出方程求解即可;

(3)分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;

(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.

(1)∵点A表示的数为8,BA点左边,AB=22,
∴点B表示的数是8-22=-14,
∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,
∴点P表示的数是8-4t.
故答案为:-14,8-4t;

(2)设点P运动x秒时,在点C处追上点Q,

AC=5x,BC=3x,
∵AC-BC=AB,
∴4x-2x=22,
解得:x=11,
∴点P运动11秒时追上点Q;

(3) ①点P、Q相遇之前,4t+2+2t =22,t=

②点P、Q相遇之后,4t+2t -2=22,t=4,

故答案为:4

(4)线段MN的长度不发生变化,都等于11;理由如下:

①当点P在点A、B两点之间运动时:

MN=MP+NP=AP+BP=(AP+BP)=AB=×22=11

②当点P运动到点B的左侧时:

MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=11

∴线段MN的长度不发生变化,其值为11.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网