题目内容
【题目】如图,平行四边形ABCD的对角线AC与BD相交于点O,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AO,AB于点M,N;②以点O为圆心,以AM长为半径作弧,交OC于点M';③以点M'为圆心,以MN长为半径作弧,在∠COB内部交前面的弧于点N';④过点N'作射线ON'交BC于点E.若AB=8,则线段OE的长为_______.
【答案】4
【解析】
利用作法得到∠COE=∠OAB,则OE//AB,利用平行四边形的性质判断OE为△A BC的中位线,从而得到OE的长.
解:由作法得∠COE=∠OAB,
∴OE∥AB,
∵四边形ABCD为平行四边形,
∴OC=OA,
∴CE=BE,
∴OE为△ABC的中位线,
∴OE=AB=
×8=4.
故答案为4.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目