题目内容

【题目】如图,在正方形ABCD中,AB=4,PCD边上的动点(P点不与C、D重合),过点P作直线与BC的延长线交于点E,与AD交于点F,且CP=CE,连接DE、BP、BF,设CP=x,PBF的面积为S1PDE的面积为S2

(1)求证:BPDE;

(2)求S1﹣S2关于x的函数解析式,并写出x的取值范围;

(3)当∠PBF=30°时,求S1﹣S2的值.

【答案】(1)见解析;(2)S1﹣S2=8﹣2x(0x4);(3)S1﹣S2=8﹣2x=8﹣.

【解析】

(1)如图1中,延长BPDEM.只要证明△BCP≌△DCE,推出∠BCP=∠CDE,由∠CBP+∠CPB=90°,∠CPB=∠DPM,即可推出∠CDE+∠DPM=90°,延长即可解决问题;

(2)根据S1-S2=SPBF-SPDE计算即可解决问题;

(3)先求出PC的长,再利用(2)中结论计算即可;

(1)如图1中,延长BPDEM.

∵四边形ABCD是正方形,

CB=CD,BCP=DCE=90°,

CP=CE,

∴△BCP≌△DCE,

∴∠BCP=CDE,

∵∠CBP+CPB=90°,CPB=DPM,

∴∠CDE+DPM=90°,

∴∠DMP=90°,

BPDE.

(2)由题意S1﹣S2=[16﹣2x﹣2x﹣(4﹣x)2]﹣(4﹣x)x

=8﹣2x(0<x<4).

(3)如图2中,

∵∠PBF=30°,

CP=CE,DCE=90°,

∴∠CPE=CEP=DPF=45°,FDP=90°,

∴∠PFD=DPF=45°,

DF=DP,AD=CD,

AF=PC,AB=BC,A=BCP=90°,

∴△BAF≌△BCP,

∴∠ABF=CBP=30°,

x=PC=BCtan30°=

S1﹣S2=8﹣2x=8﹣

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网