题目内容

【题目】已知关于x的方程x2﹣2(k﹣1)x+k2=0,
(1)当k为何值时,方程有实数根;
(2)设x1 , x2是方程的两个实数根,且x12+x22=4,求k的值.

【答案】
(1)解:要使方程有实数根,必须△≥0

即4(k﹣1)2﹣4k2≥0

解得k≤ ,∴当k≤ 时,方程有实数根.


(2)解:由韦达定理得,x1+x2=2(k﹣1),x1x2=k2

∴x12+x22=(x1+x22﹣2x1x2

=4(k﹣1)2﹣2k2

=2k2﹣8k+4,

∵x12+x22=4,

∴2k2﹣8k+4=4

解得k1=0,k2=4,

由(1)知k≤ ,∴k=4不合题意,

∴k=0.


【解析】(1)根据△≥0,确定k的取值范围;(2)把x12+x22=4转化成(x1+x22﹣2x1x2=4,再把x1+x2=2(k﹣1),x1x2=k2代入,得到关于k的方程,即可求得k的值.
【考点精析】关于本题考查的求根公式和根与系数的关系,需要了解根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根;一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定;两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网