题目内容
【题目】如图,P为⊙O直径AB延长线上的一点,PC切⊙O于点C,过点B作CP的垂线BH交⊙O于点D,连结AC,CD.
(1)求证:∠PBH=2∠HDC;
(2)若sin∠P=,BH=3,求BD的长.
【答案】(1)详见解析;(2)18
【解析】
(1)连接OC,因为PC切⊙O于点C,则OC⊥PC,因为过点B作CP的垂线BH交⊙O于点D,可得DH∥OC,进而得出∠PBH=∠BOC=2∠HDC;
(2)作OM⊥DH于H,设⊙O的半径为r,可得四边形OMHC为矩形,因为sin∠P=,BH=3,所以BP=4,由△PHB∽△PCO,得,求得r=12,可得出MH的长,从而求出BD的长.
解:(1)如图,连接OC,
∵PC切⊙O于点C,
∴OC⊥PC,
∵过点B作CP的垂线BH交⊙O于点D,
∴DH∥OC,
∴∠PBH=∠BOC,
∵∠BOC=2∠HDC,
∴∠PBH=2∠HDC;
(2)如图,作OM⊥DH于H,设⊙O的半径为r,
∵∠OCH=∠OMH=∠CHM=90°,
∴四边形OMHC为矩形,
∵sin∠P=,BH=3,
∴,
∴BP=4,
∵OC∥DH,
∴△PHB∽△PCO,
∴,
∴,解得r=12,
∴MH=OC=12,
∴MB=MH﹣BH=12﹣3=9,
∴BD=2MB=18.
【题目】诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩(x为整数,总分100分),绘制了如下尚不完整的统计图表.
组别 | 成绩分组(单位:分) | 频数 |
A | 50≤x<60 | 40 |
B | 60≤x<70 | a |
C | 70≤x<80 | 90 |
D | 80≤x<90 | b |
E | 90≤x<100 | 100 |
合计 | c |
根据以上信息解答下列问题:
(1)统计表中a= ,b= ,c= ;
(2)扇形统计图中,m的值为 ,“E”所对应的圆心角的度数是 (度);
(3)若参加本次大赛的同学共有4000人,请你估计成绩在80分及以上的学生大约有多少人?