题目内容

【题目】如图,在⊙O中,F,G是直径AB上的两点,C,D,E是半圆上的三点,如果弧AC的度数为60°,弧BE的度数为20°,CFA=DFB,DGA=EGB.求∠FDG的大小.

【答案】50°.

【解析】

C关于AB的对称点M,作E关于AB的对称点N,连接CM,FM,求出∠AFM=BFD,推出D、F、M三点共线,D、G、N三点共线,求出弧AM=60°,弧BN=20°,即可求出答案.

如图:作点C关于AB的对称点M,点E关于AB的对称点N,连结CM、FM,设CMAB于点Q,

依题可得ABCM,CQ=MQ,

∴∠CFA=AFM,

又∵∠CFA=DFB,

∴∠AFM=DFB,

D、F、M三点共线,

同理可得D、G、N三点共线,

又∵弧AC=60°,弧BE=20°,

∴弧AM=AC=60°,弧BN=BE=20°,

∴弧MN=180°-60°-20°=100°,

∴∠FDG=×100°=50°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网