题目内容
如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF等于
A.
60°
B.
65°
C.
70°
D.
80°
平行四边形ABCD的周长为32,且5AB=3BC,则对角线AC的取值范围为
6<AC<10
6<AC<16
10<AC<16
4<AC<16
如图,在△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB.证明:四边形AEDF是菱形.
对于这道题,小林是这样证明的.
证明:因为AD平分∠BAC,所以∠1=∠2.
因为DE∥AC,所以∠2=∠3.
因为DF∥AB,所以∠1=∠4.
又AD=AD,所以△AED≌△AFD.
所以AE=AF,DE=DF.
所以四边形AEDF是菱形.
老师说小林的解题过程有错误,你能看出来吗?
(1)请你帮小林指出他的错误是什么.
(2)请你帮小林做出正确的解答.
如图,在菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE,则∠DEC的大小为
78°
75°
45°
如图,在□ABCD中,点E,F分别在AB、CD上,且AE=CF.
(1)求证:△ADE≌△CBF.
(2)若DF=BF,求证:四边形DEBF是菱形.
如图,在□ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为
4
3
2
如图,在△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为________.
四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:
①AB∥CD,AD∥BC;
②AB=CD,AD=BC;
③AO=CO,BO=DO;
④AB∥CD,AD=BC.
其中一定能判断四边形ABCD是平行四边形的条件共有
1组
2组
3组
4组
如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF.
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?