题目内容
如图,∠AOB=60°,点M是射线OB上的点,OM=4,以点M为圆心,2cm为半径作圆.若OA绕点O按逆时针方向旋转,当OA和⊙M相切时,OA旋转的角度是______.
如图;
①当OA旋转到OE位置时,与圆M相切于点E,连接ME;
则ME=2,∠MEO=90°;
Rt△OEM中,sin∠MOE=
=
,
∴∠MOE=30°,
∴∠AOE=∠AOB-∠MOE=30°;
②当OA旋转到OF位置时,与圆M相切于点F,连接MF;
则MF=2,∠MFO=90°;
Rt△OFM中,sin∠MOF=
=
,
∴∠MOF=30°,
∴∠AOF=∠AOB+∠FOB=90°;
故OA旋转的角度为30°或90°.
①当OA旋转到OE位置时,与圆M相切于点E,连接ME;
则ME=2,∠MEO=90°;
Rt△OEM中,sin∠MOE=
ME |
OM |
1 |
2 |
∴∠MOE=30°,
∴∠AOE=∠AOB-∠MOE=30°;
②当OA旋转到OF位置时,与圆M相切于点F,连接MF;
则MF=2,∠MFO=90°;
Rt△OFM中,sin∠MOF=
MF |
OM |
1 |
2 |
∴∠MOF=30°,
∴∠AOF=∠AOB+∠FOB=90°;
故OA旋转的角度为30°或90°.
练习册系列答案
相关题目