题目内容
如图所示,AB是⊙O直径,OD过弦BC的中点F,且交⊙O于点E,若∠AEC=∠ODB.求证:直线BD和⊙O相切.
证明:连接AC,
∴∠AEC=∠ABC,
∵∠AEC=∠ODB,
∴∠ODB=∠ABC.
∵O,F分别是AB,BC的中点,
∴AC∥OD,
∴∠BOD=∠BAC.
∵∠BAC+∠ABC=90°,
∴∠ODB+∠BOD=90°.
∴OB⊥BD,即直线BD和⊙O相切.
∴∠AEC=∠ABC,
∵∠AEC=∠ODB,
∴∠ODB=∠ABC.
∵O,F分别是AB,BC的中点,
∴AC∥OD,
∴∠BOD=∠BAC.
∵∠BAC+∠ABC=90°,
∴∠ODB+∠BOD=90°.
∴OB⊥BD,即直线BD和⊙O相切.
练习册系列答案
相关题目