题目内容

如图,抛物线y=-x2+5x+m经过点A(1,0),与y轴交于点B,
(1)求m的值;
(2)若抛物线与x轴的另一交点为C,求△CAB的面积;
(3)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.
(1)根据题意,把点A的坐标代入抛物线方程得:
0=-1+5+m,即得m=-4;

(2)根据题意得:
令y=0,即-x2+5x-4=0,解得x1=1,x2=4,
∴点C坐标为(4,0);
令x=0,解得y=-4,
∴点B的坐标为(0,-4);
∴由图象可得,△CAB的面积S=
1
2
×OB×AC=
1
2
×4×3=6;

(3)根据题意得:
①当点O为PB的中点,设点P的坐标为(0,y),(y>0)
则y-4=0,即得y=4,
∴点P的坐标为(0,4).
②当AB=BP时,AB=
17

∴OP的长为:
17
-4,
∴P(0,
17
-4),
∴P(0,
17
-4),或(0,4)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网