题目内容
【题目】参照学习函数的过程与方法,探究函数y=的图象与性质.
因为y=,即y=﹣+1,所以我们对比函数y=﹣来探究.
列表:
x | … | ﹣4 | ﹣3 | ﹣2 | ﹣1 | ﹣ | 1 | 2 | 3 | 4 | … | |
y=﹣ | … | 1 | 2 | 4 | ﹣4 | ﹣1 | 1 | ﹣ | ﹣ | … | ||
y= | … | 2 | 3 | 5 | ﹣3 | ﹣1 | 0 | … |
描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=相应的函数值为纵坐标,描出相应的点,如图所示:
(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;
(2)观察图象并分析表格,回答下列问题:
①当x<0时,y随x的增大而 ;(填“增大”或“减小”)
②y=的图象是由y=﹣的图象向 平移 个单位而得到;
③图象关于点 中心对称.(填点的坐标)
(3)设A(x1,y1),B(x2,y2)是函数y=的图象上的两点,且x1+x2=0,试求y1+y2+3的值.
【答案】(1)图象见解析;(2)增大,上,1,(0,1);(3)5.
【解析】(1)用光滑曲线顺次连接即可;
(2)观察图象,利用图象法即可解决问题;
(3)根据中心对称的性质,可知A(x1,y1),B(x2,y2)关于(0,1)对称,由此即可解决问题.
(1)函数图象如图所示:
(2)①当x<0时,y随x的增大而增大;
②y=的图象是由y=﹣的图象向上平移1个单位而得到;
③图象关于点(0,1)中心对称,
故答案为:①增大;②上,1;③(0,1);
(3)∵x1+x2=0,
∴x1=﹣x2,
∴A(x1,y1),B(x2,y2)关于(0,1)对称,
∴y1+y2=2,
∴y1+y2+3=5.
练习册系列答案
相关题目