题目内容
如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D=30°,
(1)请判断CD是否⊙O的切线?并说明理由;
(2)若⊙O的半径为6,求弧AC的长.(结果保留π)
(1)请判断CD是否⊙O的切线?并说明理由;
(2)若⊙O的半径为6,求弧AC的长.(结果保留π)
(1)证明:连接OC,
∵AC=CD,
∴∠D=∠A=30°,
∵OC=OA,
∴∠A=∠OCA=30°,
∴∠COD=60°,
∴∠DC0=90°,
∴OC⊥DC,
∴CD是⊙O的切线;
(2)∵∠COD=60°,
∴∠COA=180°-60°=120°,
∴弧AC的长为:
=
=4π.
∵AC=CD,
∴∠D=∠A=30°,
∵OC=OA,
∴∠A=∠OCA=30°,
∴∠COD=60°,
∴∠DC0=90°,
∴OC⊥DC,
∴CD是⊙O的切线;
(2)∵∠COD=60°,
∴∠COA=180°-60°=120°,
∴弧AC的长为:
nπr |
180 |
120×π×6 |
180 |
练习册系列答案
相关题目