题目内容
【题目】如图,在正方形中,,点G在边上,连接,作于点E,于点F,连接、,设,,.
(1)求证:;
(2)求证:;
(3)若点G从点B沿边运动至点C停止,求点E,F所经过的路径与边围成的图形的面积.
【答案】(1)见解析;(2)见解析;(3)点E,F所经过的路径与边AB所围成图形的面积为4.
【解析】
(1)证明,根据全等三角形的性质可得出结论;
(2)证明,根据正方形的性质、相似三角形的性质证明;
(3)根据所围成的图形是△AOB,求出它的面积即可.
(1)证明:在正方形中,,
.
∵,
∴.
∴.
∵,
∴.
在和中,
∴.
∴.
(2)在和中,.
∴.
由①可知,
∴.
∴.
由①可知,,
∴.∴.
∵,,
∴.
∴.
∴.
(3)∵.
∴
∴当点G从点B沿边运动至点C停止时,点E经过的路径是以为直径,圆心角为90°的圆弧,同理可得点F经过的路径,两弧交于正方形的中心点O.(如图所示)
∵
∴所围成图形的面积
练习册系列答案
相关题目