题目内容
【题目】(1)问题发现
如图①,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,点B在线段AE上,点C在线段AD上,请直接写出线段BE与线段CD的数量关系: ;
(2)操作探究
如图②,将图①中的△ABC绕点A顺时针旋转,旋转角为α(0°α360°),请判断并证明线段BE与线段CD的数量关系;
(3)解决问题
将图①中的△ABC绕点A顺时针旋转,旋转角为α(0°α360°),若DE=2AC,在旋转的过程中,当以A、B、C、D四点为顶点的四边形是平行四边形时,请直接写出旋转角α的度数 .
【答案】(1);(2),证明见解析;(3)45°,225°或315°
【解析】
(1)根据等腰直角三角形的性质可得AB=AC,AE=AD,再根据等量关系可得线段BE与线段CD的关系;
(2)根据等腰直角三角形的性质可得AB=AC,AE=AD,根据旋转的性质可得∠BAE=∠CAD,根据SAS可证△BAE≌△CAD,根据全等三角形的性质即可求解;
(3)根据平行四边形的性质可得∠ABC=∠ADC=45°,再根据等腰直角三角形的性质即可求解.
解:(1)∵△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,
∴AB=AC,AE=AD,
∴AEAB=ADAC,
∴BE=CD,
故答案为:BE=CD;
(2)∵△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,
∴AB=AC,AE=AD,
由旋转的性质得,∠BAE=∠CAD,
在△BAE与△CAD中,
∴△BAE≌△CAD(SAS)
∴BE=CD;
(3)如图,
∵以A、B、C、D四点为顶点的四边形是平行四边形,△ABC和△AED都是等腰直角三角形,
∴∠ABC=∠ADC=45°,
∵ED=2AC,
∴AC=CD,
∴①当C点旋转于C1位置时∠CAD=45°,
②当C点旋转于C2位置时∠CAD=360°90°45°=225°,
③当C点旋转于C3位置时∠CAD=360°45°=315°,
∴角α的度数是45°或225°或315°,
故答案为:45°或225°或315.