题目内容
【题目】如图,在△ABC 中,AB=AC,∠BAC=120°,AC 的垂直平分线交 BC 于 F,交 AC 于 E,交 BA 的延长线于 G,若 EG=3,则 BF 的长是______.
【答案】4
【解析】
根据线段垂直平分线得出AE=EC,∠AEG=∠AEF=90°,求出∠B=∠C=∠G=30°,根据勾股定理和含30°角的直角三角形性质求出AE和EF,即可求出FG,再求出BF=FG即可
∵AC的垂直平分线FG,
∴AE=EC,∠AEG=∠AEF=90°,
∵∠BAC=120°,
∴∠G=∠BAC-∠AEG=120°-90°=30°,
∵∠BAC=120°,AB=AC,
∴∠B=∠C=(180°-∠BAC)=30°,
∴∠B=∠G,
∴BF=FG,
∵在Rt△AEG中,∠G=30°,EG=3,
∴AG=2AE,
即(2AE)2=AE2+32,
∴AE=(负值舍去)
即CE=,
同理在Rt△CEF中,∠C=30°,CF=2EF,
(2EF)2=EF2+()2,
∴EF=1(负值舍去),
∴BF=GF=EF+CE=1+3=4,
故答案为:4.
练习册系列答案
相关题目