题目内容

【题目】如图,(图1,图2),四边形ABCD是边长为4的正方形,点E在线段BC上,∠AEF=90°,且EF交正方形外角平分线CP于点F,交BC的延长线于点N, FN⊥BC.

(1)若点E是BC的中点(如图1),AE与EF相等吗?

(2)点E在BC间运动时(如图2),设BE=x,△ECF的面积为y。

①求y与x的函数关系式;

②当x取何值时,y有最大值,并求出这个最大值.

【答案】(1)AE=EF;(2)①y=-x2+2x(0<x<4),②当x=2,y最大值=2.

【解析】

(1)在AB上取一点G,使AG=EC,连接GE,利用ASA,易证得AGE≌△ECF,则可证得:AE=EF;

(2)同(1)可证明AE=EF,利用AAS证明ABE≌△ENF,根据全等三角形对应边相等可得FN=BE,再表示出EC,然后利用三角形的面积公式即可列式表示出ECF的面积为y,然后整理再根据二次函数求解最值问题.

1)如图,在AB上取AG=EC,

∵四边形ABCD是正方形,

AB=BC,

有∵AG=EC ,BG=BE ,

又∵∠B=90°,

∴∠AGE=135°,

又∵∠BCD=90°,CP平分∠DCN,

∴∠ECF=135°,

∵∠BAE+AEB=90°,AEB+FEC=90°,

∴∠BAE=FEC,

AGEECF

,

∴△AGE≌△ECF,

AE=EF;

(2)①∵由(1)证明可知当E不是中点时同理可证AE=EF,

∵∠BAE=NEF,B=ENF=90°,

∴△ABE≌△ENF,

FN=BE=x,

SECF= (BC-BE)·FN,

y= x(4-x),

y=- x2+2x(0<x<4),

x=2,y最大值=2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网