题目内容

如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:
①当x>3时,y<0;
②3a+b>0;
③-1≤a≤-
2
3

④3≤n≤4中,
正确的是(  )
A.①②B.③④C.①④D.①③

①∵抛物线y=ax2+bx+c与x轴交于点A(-1,0),对称轴直线是x=1,
∴该抛物线与x轴的另一个交点的坐标是(3,0),
∴根据图示知,当x>3时,y<0.
故①正确;

②根据图示知,抛物线开口方向向下,则a<0.
∵对称轴x=-
b
2a
=1,
∴b=-2a,
∴3a+b=3a-2a=a<0,即3a+b<0.
故②错误;

③∵抛物线与x轴的两个交点坐标分别是(-1,0),(3,0),
∴-1×3=-3,
c
a
=-3,则a=-
c
3

∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),
∴2≤c≤3,
∴-1≤-
c
3
≤-
2
3
,即-1≤a≤-
2
3

故③正确;

④根据题意知,a=-
c
3
,-
b
2a
=1,
∴b=-2a=
2c
3

∴n=a+b+c=
4
3
c.
∵2≤c≤3,
8
3
4
3
c≤4,即
8
3
≤n≤4.
故④错误.
综上所述,正确的说法有①③.
故选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网