题目内容

【题目】如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E,

(1)试说明△ABC与△MED全等;

(2)若∠M=35°,求∠B的度数?

【答案】(1)见解析;(2)55°.

【解析】

(1)根据平行线的性质可得出∠B=∠MED,结合全等三角形的判定定理可判断△ABC≌△MED.

(2)在△MDE中,∠MDE=90°,∠M=35°,故∠MED可求,又∠B=∠MED,即可得出答案.

解:(1)证明:∵MD⊥AB,

∴∠MDE=∠C=90°,

∵ME∥BC,

∴∠B=∠MED,

在△ABC与△MED中,

∴△ABC≌△MED(AAS)

(2)∵在△MDE中,∠MDE=90°,∠M=35°,

∴∠MED =180°-90°-35°=55°,

又∵△ABC≌△MED,

∴∠B=∠MED=55°.

所以∠B的度数为55°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网