题目内容
如图,在平面直角坐标系内,梯形OABC的顶点坐标分别是:A(3,4),B(8,4),C(11,0),点P(t,0)是线段OC上一点,设四边形ABCP的面积为S.
(1)求梯形的高BE及S与t的函数关系.
(2)当S=20时,试判断四边形ABCP的形状,并说明理由.
(1)求梯形的高BE及S与t的函数关系.
(2)当S=20时,试判断四边形ABCP的形状,并说明理由.
(1)∵B(8,4),
∴BE=4,
∴S=
(AB+PC)BE,
=
(5+11-t)×4,
=-2t+32,
(2)当S=20时四边形ABCP为菱形,
理由:S=20即-2t+32=20,
解得:t=6,
此时PC=11-t=5=AB,
∵ABCD为梯形,
∴AB∥OC,
∴四边形ABCP为平行四边形,
在Rt△BEC中BE=4,EC=3,
∴BC=5,
∴BC=AB,
∴平行四边形ABCP为菱形.
∴BE=4,
∴S=
1 |
2 |
=
1 |
2 |
=-2t+32,
(2)当S=20时四边形ABCP为菱形,
理由:S=20即-2t+32=20,
解得:t=6,
此时PC=11-t=5=AB,
∵ABCD为梯形,
∴AB∥OC,
∴四边形ABCP为平行四边形,
在Rt△BEC中BE=4,EC=3,
∴BC=5,
∴BC=AB,
∴平行四边形ABCP为菱形.
练习册系列答案
相关题目