题目内容

等腰梯形ABCD中,ADBC,E、F、G、H分别是AD、BE、BC、CE的中点.
试探究:
(1)四边形EFGH的形状;
(2)若BC=2AD,且梯形ABCD的面积为9,求四边形EFGH的面积.
(1)∵梯形ABCD是等腰梯形,
∴AB=CD,∠A=∠D(等腰梯形的两腰相等,在同一底边上的两内角相等),
又∵AE=DE,
∴△ABE≌△DCE(SAS).
∴BE=CE(全等三角形的对应边相等).
又∵EF=
1
2
EB,EH=
1
2
EC,
∴EF=EH.
∵G、F、H分别是BC、BE、CE的中点,
∴GFCE,GHBE(三角形中位线定理).
∴四边形EFGH是平行四边形(平行四边形的定义).
∴四边形EFGH是菱形(有一组邻边相等的平行四边形是菱形).

(2)∵BE=CE,G为BC中点,
∴EG⊥BC(等腰三角形的三线合一).
∴EG为梯形ABCD的高.
∵S梯形=
1
2
(AD+BC)×EG=9,BC=2AD,
1
2
1
2
BC+BC)×EG=9,
∴BC•EG=12.
∵F、H分别是BE、CE的中点,
∴FH=
1
2
BC.
∴S菱形EFGH=
1
2
FH•EG=
1
2
×
1
2
×BC•EG=3.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网