题目内容
【题目】如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab<0;②b2﹣4ac>0;③9a﹣3b+c>0;④b﹣4a=0;⑤方程ax2+bx=0的两个根为x1=0,x2=﹣4,其中正确的结论有( )
A.2个B.3个C.4个D.5个
【答案】C
【解析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解:∵抛物线开口向下,
∴a<0,
∵,
∴b=4a,ab>0,
∴b﹣4a=0,
∴①错误,④正确,
∵抛物线与x轴交于﹣4,0处两点,
∴b2﹣4ac>0,方程ax2+bx=0的两个根为x1=0,x2=﹣4,
∴②⑤正确,
∵当x=﹣3时y>0,即9a﹣3b+c>0,
∴③正确,
故正确的有②③④⑤.
故选:C.
练习册系列答案
相关题目