题目内容
【题目】如图,直线AC与⊙O相切于点A,点B为⊙O上一点,且OC⊥OB于点O,连接AB交OC于点D.
(1)求证:AC=CD;
(2)若AC=3,OB=4,求OD的长度.
【答案】(1)见解析;(2)2
【解析】
(1)由AC是⊙O的切线,得OA⊥AC,结合OD⊥OB,OA=OB,得∠CDA=∠DAC,进而得到结论;
(2)利用勾股定理求出OC,即可解决问题.
(1)∵AC是⊙O的切线,
∴OA⊥AC,
∴∠OAC=90°,即:∠OAD+∠DAC=90°,
∵OD⊥OB,
∴∠DOB=90°,
∴∠BDO+∠B=90°,
∵OA=OB,
∴∠OAD=∠B,
∴∠BDO=∠DAC,
∵∠BDO=∠CDA,
∴∠CDA=∠DAC,
∴CD=CA.
(2)∵在Rt△ACO中,OC==5,
∵CA=CD=3,
∴OD=OC﹣CD=2.
练习册系列答案
相关题目
【题目】一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:
x | 3000 | 3200 | 3500 | 4000 |
y | 100 | 96 | 90 | 80 |
(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.
(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:
租出的车辆数 | 未租出的车辆数 | ||
租出每辆车的月收益 | 所有未租出的车辆每月的维护费 |
(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元.