题目内容

【题目】问题情境
已知矩形的面积为S(S为常数,S>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+ )(x>0)
探索研究
(1)我们可以借鉴学习函数的经验,先探索函数y=x+ (x>0)的图象性质.
①列表:

x

1

2

3

4

y

m

2

表中m=
②描点:如图所示;

③连线:请在图中画出该函数的图象
④观察图象,写出两条函数的性质;
(2)解决问题
在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.同样通过配方也可以求函数y=x+ (x>0)的最小值.
y=x+ = + = + ﹣2 +2 = +2
≥0,∴y≥2
∴当 =0,即x=1时,y最小值=2
请类比上面配方法,直接写出“问题情境”中的问题答案.

【答案】
(1);解: ;函数有最小值2;当x>1时,y随x的增大而增大
(2)

y=2(x+ )=2( 2+4

=0时,即x= ,y有最大值4

所以该矩形的长为 时,它的周长最小,最小值是4


【解析】解:探索研究
①当x= 时,m= +3=
③如图,

【考点精析】通过灵活运用函数的图象和二次函数的性质,掌握函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网