题目内容
【题目】先化简,再求值:[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y,其中x= ﹣ ,y= ﹣ .
【答案】解:原式=[x2y(xy﹣1)﹣x2y(1﹣xy)]÷x2y
=[x2y(2xy﹣2)]÷x2y
=2xy﹣2,
当x= ﹣ ,y= ﹣ 时,原式=2( ﹣ )( ﹣ )﹣2=﹣12+4 .
【解析】原式中括号中利用单项式乘以多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.
【考点精析】根据题目的已知条件,利用二次根式的混合运算和多项式除以单项式的相关知识可以得到问题的答案,需要掌握二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号);多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.
【题目】问题情境
已知矩形的面积为S(S为常数,S>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+ )(x>0)
探索研究
(1)我们可以借鉴学习函数的经验,先探索函数y=x+ (x>0)的图象性质.
①列表:
x | … | 1 | 2 | 3 | 4 | … | |||
y | … | m | 2 | … |
表中m=;
②描点:如图所示;
③连线:请在图中画出该函数的图象;
④观察图象,写出两条函数的性质;
(2)解决问题
在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.同样通过配方也可以求函数y=x+ (x>0)的最小值.
y=x+ = + = + ﹣2 +2 = +2
∵ ≥0,∴y≥2
∴当 ﹣ =0,即x=1时,y最小值=2
请类比上面配方法,直接写出“问题情境”中的问题答案.
【题目】2015年榕城区从中随机调查了5所初中九年级学生的数学考试成绩,学生的考试成绩情况如表(数学考试满分120分)
分数段 | 频数 | 频率 |
72分以下 | 368 | 0.2 |
72﹣﹣﹣﹣80分 | 460 | 0.25 |
81﹣﹣﹣﹣95分 | ||
96﹣﹣﹣﹣108分 | 184 | 0.2 |
109﹣﹣﹣﹣119分 | ||
120分 | 54 |
(1)这5所初中九年级学生的总人数有多少人?
(2)统计时,老师漏填了表中空白处的数据,请你帮老师填上;
(3)从这5所初中九年级学生中随机抽取一人,恰好是108分以上(不包括108分)的概率是多少?