题目内容
【题目】如图,四边形ABCD内接于⊙O,点O在AB上,BC=CD,过点C作⊙O的切线,分别交AB,AD的延长线于点E,F.
(1)求证:AF⊥EF;(2)若cosA=,BE=1,求AD的长.
【答案】(1)略;(2).
【解析】
(1)连接AC,OC,如图,先证明OC∥AF,再根据切线的性质得OC⊥EF,从而得到AF⊥EF;
(2)先利用OC∥AF得到∠COE=∠DAB,在Rt△OCE中,设OC=r,利用余弦的定义得到,解得r=4,连接BD,如图,根据圆周角定理得到∠ADB=90°,然后根据余弦的定义可计算出AD的长.
解:(1)连接AC,OC,如图,
∵CD=BC,
∴,
∴∠1=∠2,
∵OA=OC,
∴∠2=∠OCA,
∴∠1=∠OCA,
∴OC∥AF,
∵EF为切线,
∴OC⊥EF,
∴AF⊥EF;
(2)∵OC∥AF,
∴∠COE=∠DAB,
在Rt△OCE中,设OC=r,
∵cos∠COE=cos∠DAB=,即,
解得r=4,
连接BD,如图,
∵AB为直径,
∴∠ADB=90°,
在Rt△ADB中,cos∠DAB=,
∴AD=×8=.
练习册系列答案
相关题目