题目内容
如图,⊙O1的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD中心,O1O2⊥AB于P点,O1O2=8.若将⊙O1绕点P按顺时针方向旋转360°,在旋转过程中,⊙O1与正方形ABCD的边只有一个公共点的情况共出现 次.
5
根据⊙O1的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O2垂直AB于P点,设O1O2交圆O1于M,求出PM=4,得出圆O1与以P为圆心,以4为半径的圆相外切,即可得到答案.
解答:解:∵⊙O1的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O2垂直AB于P点,
设O1O2交圆O1于M,
∴PM=8-3-1=4,
圆O1与以P为圆心,以4为半径的圆相外切,
∴有5次,依次是⊙O1在正方形ABCD外,与边AD相切,⊙O1在正方形ABCD内,与边AD相切,⊙O1在正方形ABCD内,与边CD相切,⊙O1在正方形ABCD内,与边CD相切,⊙O1在正方形ABCD外,与边BC相切;
故答案为:5.
解答:解:∵⊙O1的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O2垂直AB于P点,
设O1O2交圆O1于M,
∴PM=8-3-1=4,
圆O1与以P为圆心,以4为半径的圆相外切,
∴有5次,依次是⊙O1在正方形ABCD外,与边AD相切,⊙O1在正方形ABCD内,与边AD相切,⊙O1在正方形ABCD内,与边CD相切,⊙O1在正方形ABCD内,与边CD相切,⊙O1在正方形ABCD外,与边BC相切;
故答案为:5.
练习册系列答案
相关题目