题目内容
如图,AB是⊙O的直径,C、D是⊙O上的两点,若∠BAC=20°,AD=DC,则∠DAC的度数是( )
A.30° | B.35° | C.45° | D.70° |
B
解:连接OC,OD,如图所示:
∵∠BAC与∠BOC所对的弧都为,∠BAC=20°,
∴∠BOC=2∠BAC=40°,
∴∠AOC=140°,
又=,
∴∠COD=∠AOD=∠AOC=70°,
∵∠DAC与∠DOC所对的弧都为,
∴∠DAC=∠COD=35°.
故选B
∵∠BAC与∠BOC所对的弧都为,∠BAC=20°,
∴∠BOC=2∠BAC=40°,
∴∠AOC=140°,
又=,
∴∠COD=∠AOD=∠AOC=70°,
∵∠DAC与∠DOC所对的弧都为,
∴∠DAC=∠COD=35°.
故选B
练习册系列答案
相关题目