题目内容
【题目】将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB= ,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为( )
A.
B.2
C.3
D.2
【答案】C
【解析】解:连接CC1 .
Rt△ABE中,∠BAE=30°,AB= ,
易得BE=AB×tan30°=1,AE=2.∠AEB1=∠AEB=60°,
由AD∥BC,那么∠C1AE=∠AEB=60°,
所以△AEC1为等边三角形,
那么△CC1E也为等边三角形,
那么EC=EC1=AE=2,
∴BC=BE+EC=3,
故选C.
由三角函数易得BE,AE长,根据翻折和对边平行可得△AEC1和△CEC1为等边三角形,那么就得到EC长,相加即可.
练习册系列答案
相关题目