题目内容
【题目】如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是( )
A.∠AOC=40° B.∠COE=130° C.∠EOD=40° D.∠BOE=90°
【答案】C
【解析】
试题分析:首先由垂线的定义可知∠EOB=90°,然后由余角的定义可求得∠EOD,然后由邻补角的性质可求得∠EOC,由对顶角的性质可求得∠AOC.
解:由对顶角相等可知∠AOC=∠BOD=40°,故A正确,所以与要求不符;
∵OE⊥AB,
∴∠EOB=90°,故D正确,与要求不符;
∵∠EOB=90°,∠BOD=40°,
∴∠EOD=50°.故C错误,与要求相符.
∴∠EOC=180°﹣∠EOD=180°﹣50°=130°.故B正确,与要求不符.
故选:C.
练习册系列答案
相关题目
【题目】为了让市民树立起“珍惜水、节约水、保护水”的用水理念,某市从今年4月起,居民生活用水按阶梯式计算水价,水价计算方式如下表所示,每吨水还需另加污水处理费0.80元.已知小张家今年4月份用水20吨,交水费49元;5月份用水25吨,交水费65.4元.(友情提示:水费=水价+污水处理费)
用水量 | 水价(元/吨) |
不超过20吨 | m |
超过20吨且不超过30吨的部分 | n |
超过30吨的部分 | 2m |
(1)求m、n的值;
(2)随着夏天的到来,用水量将激增.为了节省开支,小张计划把6月份的水费控制在不超过家庭月收入的2%.若小张家的月收入为8190元,则小张家6月份最多能用水多少吨?