题目内容
【题目】如图(1)所示,为矩形的边上一点,动点,同时从点出发,点沿折线运动到点时停止,点沿运动到点时停止,它们运动的速度都是秒,设、同时出发秒时,的面积为.已知与的函数关系图象如图(2)(曲线为抛物线的一部分)则下列结论正确的是( )
图(1) 图(2)
A.B.当是等边三角形时,秒
C.当时,秒D.当的面积为时,的值是或秒
【答案】D
【解析】
先根据图象信息求出AB、BE、BE、AE、ED,
A、直接求出比,
B、先判断出∠EBC≠60°,从而得出点P可能在ED上时,△PBQ是等边三角形,但必须是AD的中点,而AE>ED,所以点P不可能到AD中点的位置,故△PBQ不可能是等边三角形;
C、利用相似三角形性质列出方程解决,分两种情况讨论计算即可,
D、分点P在BE上和点P在CD上两种情况计算即可.
由图象可知,AD=BC=BE=5,CD=AB=4,AE=3,DE=2,
A、∴AB:AD=5:4,故A错误,
B、∵tan∠ABE=,
∴∠ABE≠30°
∴∠PBQ≠60°,
∴点P在ED时,有可能△PBQ是等边三角形,
∵BE=BC,
∴点P到点E时,点Q到点C,
∴点P在线段AD中点时,有可能△PBQ是等边三角形,
∵AE>DE,
∴点P不可能到AD的中点,
∴△PBQ不可能是等边三角形,故B错误,
C、∵△ABE∽△QBP,
∴点E只有在CD上,且满足,
∴,
∴CP=.
∴t=(BE+ED+DQ)÷1=5+2+(4)=.
故C错误,
D、①如图(1)
在Rt△ABE中,AB=4,BE=5
sin∠AEB=,
∴sin∠CBE=
∵BP=t,
∴PG=BPsin∠CBE=t,
∴S△BPQ=BQ×PG=×t×t=t2=4,
∴t=(舍)或t=,
②当点P在CD上时,
S△BPQ=×BC×PC=×5×(5+2+4t)=×(11t)=4,
∴t=,
∴当△BPQ的面积为4cm2时,t的值是或秒,故D正确,
故选:D.