题目内容
在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分成12cm和15cm两部分,则三角形的各边的长为______.
如图,∵AB=AC,BD是AC边上的中线,
即AD=CD,
∴|(AB+AD+BD)-(BC+BD+CD)|=|AB-BC|=15-12=3(cm),AB+BC+AC=2AB+BC=12+15=27cm,
若AB>BC,则AB-BC=3cm,
又∵2AB+BC=27cm,
联立方程组并求解得:AB=10cm,BC=7cm,
10cm、10cm、7cm三边能够组成三角形;
若AB<BC,则BC-AB=3cm,
又2AB+BC=27cm,
联立方程组并求解得:AB=8cm,BC=11cm,
8cm、8cm、11cm三边能够组成三角形;
∴三角形的各边长为10cm、10cm、7cm或8cm、8cm、11cm.
故答案为:10cm、10cm、7cm或8cm、8cm、11cm.
即AD=CD,
∴|(AB+AD+BD)-(BC+BD+CD)|=|AB-BC|=15-12=3(cm),AB+BC+AC=2AB+BC=12+15=27cm,
若AB>BC,则AB-BC=3cm,
又∵2AB+BC=27cm,
联立方程组并求解得:AB=10cm,BC=7cm,
10cm、10cm、7cm三边能够组成三角形;
若AB<BC,则BC-AB=3cm,
又2AB+BC=27cm,
联立方程组并求解得:AB=8cm,BC=11cm,
8cm、8cm、11cm三边能够组成三角形;
∴三角形的各边长为10cm、10cm、7cm或8cm、8cm、11cm.
故答案为:10cm、10cm、7cm或8cm、8cm、11cm.
练习册系列答案
相关题目