题目内容

如图,已知△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角它的两边分别交AB于M,交AC于N,连接MN,求证:MN=BM+CN.
证明:如图,延长NC到E,使CE=BM,连接DE,
∵△ABC为等边三角形,△BCD为等腰三角形,且∠BDC=120°,
∴∠MBD=∠MBC+∠DBC=60°+30°=90°,
∠DCE=180°-∠ACD=180°-∠ABD=90°,
又∵BM=CE,BD=CD,
∴△CDE≌△BDM,
∴∠CDE=∠BDM,DE=DM,
∠NDE=∠NDC+∠CDE=∠NDC+∠BDM=∠BDC-∠MDN=120°-60°=60°,
∵在△DMN和△DEN中,
DM=DE
∠MDN=∠
DN=DN
EDN=60°

∴△DMN≌△DEN,
∴MN=NE=CE+CN=BM+CN.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网