题目内容
【题目】二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
给出了结论:
(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;
(2)当﹣<x<2时,y<0;
(3)a﹣b+c=0;
(4)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧
则其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】
观察表格,结合二次函数的性质一一判断即可.
(1)二次函数y=ax2+bx+c有最小值,最小值为-4,故结论错误;
(2)观察表格可知:-1<x<3时,y<0,故结论正确;
(3)∵x=-1时,a-b+c=0,故结论正确;
(4)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧,交点分别为(-1,0),(3,0),故结论正确,
故选C.
练习册系列答案
相关题目