题目内容
【题目】如图,在△ABC中,∠ABC=45°,AC=9cm,F是高AD和BE的交点,则BF的长是_____.
【答案】9cm
【解析】
由垂直的定义,三角形的内角和定理和角的和差求∠FBD=∠FAE,直角三角形中两锐角互余和等腰三角形的判定与性质求得BD=AD,用角角边证明△FBD≌△CAD,由其性质得BF=AC,求出BF的长是9cm.
如图所示:
∵AD⊥BC,BE⊥AC,
∴∠ADC=∠ADB=90°,∠BEA=90°,
又∵∠FBD+∠BDF+∠BFD=180°,
∠FAE+∠FEA+∠AFE=180°,
∠BFD=∠AFE,
∴∠FBD=∠FAE,
又∵∠ABC=45°,∠ABD+∠BAD=90°,
∴∠BAD=45°,
∴BD=AD,
在△FBD 和△CAD中,
,
∴△FBD≌△CAD(AAS),
∴BF=AC,
又∵AC=9cm,
∴BF=9cm.
故答案为:9cm.
练习册系列答案
相关题目
【题目】二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
给出了结论:
(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;
(2)当﹣<x<2时,y<0;
(3)a﹣b+c=0;
(4)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧
则其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4