题目内容
【题目】为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.
(1)补充完成下面的成绩统计分析表:
组别 | 平均分 | 中位数 | 方差 | 合格率 | 优秀率 |
甲组 | 6.7 | 3.41 | 90% | 20% | |
乙组 | 7.5 | 1.69 | 80% | 10% |
(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组的学生;(填“甲”或“乙”)
(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.
【答案】
(1)6;7.1
(2)甲
(3)解:乙组的平均分,中位数高于甲组,方差小于甲组,故乙组成绩好于甲组.
【解析】解:(1)甲组的成绩为:3,6,6,6,6,6,7,8,9,10,甲组中位数为6,乙组成绩为5,5,6,7,7,8,8,8,8,9,平均分为 (5+5+6+7+7+8+8+8+8+9)=7.1(分), 填表如下:
组别 | 平均分 | 中位数 | 方差 | 合格率 | 优秀率 |
甲组 | 6.7 | 6 | 3.41 | 90% | 20% |
乙组 | 7.1 | 7.5 | 1.69 | 80% | 10% |
2)观察上表可知,小明是甲组的学生;
3)乙组的平均分,中位数高于甲组,方差小于甲组,故乙组成绩好于甲组.
所以答案是:(1)6;7.1;(2)甲
【考点精析】解答此题的关键在于理解条形统计图的相关知识,掌握能清楚地表示出每个项目的具体数目,但是不能清楚地表示出各个部分在总体中所占的百分比以及事物的变化情况.
【题目】为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:
每月用气量 | 单价(元/m3) |
不超出75m3的部分 | 2.5 |
超出75m3不超出125m3的部分 | a |
超出125m3的部分 | a+0.25 |
(1)若甲用户3月份的用气量为60m3 , 则应缴费元;
(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;
(3)在(2)的条件下,若乙用户2、3月份共用气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?