题目内容
【题目】为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:
每月用气量 | 单价(元/m3) |
不超出75m3的部分 | 2.5 |
超出75m3不超出125m3的部分 | a |
超出125m3的部分 | a+0.25 |
(1)若甲用户3月份的用气量为60m3 , 则应缴费元;
(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;
(3)在(2)的条件下,若乙用户2、3月份共用气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?
【答案】
(1)150
(2)解:由题意,得
a=(325﹣75×2.5)÷(125﹣75),
a=2.75,
∴a+0.25=3,
设OA的解析式为y1=k1x,则有
2.5×75=75k1,
∴k1=2.5,
∴线段OA的解析式为y1=2.5x(0≤x≤75);
设线段AB的解析式为y2=k2x+b,由图象,得
,
解得 ,
∴线段AB的解析式为:y2=2.75x﹣18.75(75<x≤125);
(385﹣325)÷3=20,故C(145,385),设射线BC的解析式为y3=k3x+b1,由图象,得
,
解得: ,
∴射线BC的解析式为y3=3x﹣50(x>125)
(3)解:设乙用户2月份用气xm3,则3月份用气(175﹣x)m3,
当x>125,175﹣x≤75时,
3x﹣50+2.5(175﹣x)=455,
解得:x=135,175﹣135=40,符合题意;
当75<x≤125,175﹣x≤75时,
2.75x﹣18.75+2.5(175﹣x)=455,
解得:x=145,不符合题意,舍去;
当75<x≤125,75<175﹣x≤125时,
2.75x﹣18.75+2.75(175﹣x)﹣18.75=455,此方程无解.
∴乙用户2、3月份的用气量各是135m3,40m3
【解析】解:(1)由题意,得60×2.5=150(元);
【题目】为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.
(1)补充完成下面的成绩统计分析表:
组别 | 平均分 | 中位数 | 方差 | 合格率 | 优秀率 |
甲组 | 6.7 | 3.41 | 90% | 20% | |
乙组 | 7.5 | 1.69 | 80% | 10% |
(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组的学生;(填“甲”或“乙”)
(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.