题目内容
【题目】如图,在矩形ABCD中,BC=24cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.
已知在相同时间内,若BQ=x cm(x≠0),则AP=2x cm,CM=3x cm,DN=x2cm.
(1)当x为何值时,以P、N两点重合?
(2)问Q、M两点能重合吗?若Q、M两点能重合,则求出相应的x的值;若Q、M两点不能重合,请说明理由.
(3)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形.
【答案】(1)4;(2)点Q与点M不能重合.理由见解析;(3)x=2或x=﹣3+.
【解析】解:(1)当点P与点N重合时,
由,得(舍去)
所以时点P与点N重合 2分
(2) 当点Q与点M重合时,
由,得----------3分
此时,不符合题意.
故点Q与点M不能重合.---------4分
(3)由(1)知,点Q 只能在点M的左侧,
① 当点P在点N的左侧时,
由,
解得.
当x=2时四边形PQMN是平行四边形. 6分
② 当点P在点N的右侧时,
由,
解得(舍去).
当x=-3+时四边形NQMP是平行四边形. 8分
综上:当x=2或x=-3+时,以P,Q,M,N为顶点的四边形是平行四边形.
【题目】某市公共交通收费如下:
公交票价 | ||
里程(千米) | 票价(元) | 刷卡优惠后付款(元) |
0-10 | 2 | 1 |
10-15 | 3 | 1.5 |
15-20 | 4 | 2 |
20-25 | 5 | 2.5 |
25-30 | 6 | 3 |
以后每增加5千米 | 增加1元 | 增加0.5元 |
地铁票价 | |
里程(千米) | 票价(元) |
0-6 | 3 |
6-12 | 4 |
12-22 | 5 |
22-32 | 6 |
32-52 | 7 |
52-72 | 8 |
以后每增加20千米 | 增加1元 |
(公交票价10千米(含)内2元,不足10千米按10千米计算,其他里程类同;地铁票价6千米(含)内3元,不足6千米按6千米计算,其他里程类同)
(1)张阿姨周日去看望父母,可是张阿姨忘了带一卡通,请你帮助张阿姨思考两个问题:
①若到父母家无论乘公交车还是地铁距离都是24千米,选择哪种公交交通工具费用较少?
②若只用10元钱乘坐公交或地铁,选择哪种公共交通工具乘坐的里程更远?
(2)张阿姨下周日计划使用一卡通刷卡乘公共交通到景点游玩,若里程大于35千米且小于120千米,公交、地铁均可直达.请问:选择公交还是选择地铁出行更省钱?为什么?