题目内容

【题目】阅读下面内容,并按要求解决问题: 问题:在平面内,已知分别有个点,个点,个点,5 个点,n 个点,其中任意三 个点都不在同一条直线上.经过每两点画一条直线,它们可以分别画多少条直线?探究:为了解决这个问题,希望小组的同学们设计了如下表格进行探究:(为了方便研 究问题,图中每条线段表示过线段两端点的一条直线)

请解答下列问题:

1)请帮助希望小组归纳,并直接写出结论:当平面内有个点时,直线条数为

2)若某同学按照本题中的方法,共画了条直线,求该平面内有多少个已知点.

【答案】(1);(28.

【解析】

1)根据过两点的直线有1条,过不在同一直线上的三点的直线有3条,过任何三点都不在一条直线上四点的直线有6条,按此规律,由特殊到一般,总结出公式:;(2)将28代入公式求n即可.

解:(1)当平面内有2个点时,可以画条直线;

当平面内有3个点时,可以画条直线;

当平面内有4个点时,可以画条直线;

当平面内有nn≥2)个点时,可以画条直线;

设该平面内有 个已知点.

由题意,得

解得(舍)

答:该平面内有个已知点

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网