题目内容
【题目】如图,在Rt△ABC中,∠C=90°,AB=13,AC=12,经过点C且与AB边相切的动圆与BC、CA分别相交于点M、N,则线段MN长度的最小值为 .
【答案】
【解析】解:如图,设MN的中点为P,⊙P与AB的切点为D,连接PD,连接CP,CD,则有PD⊥AB;
∵AB=13,AC=12,
∴BC= =5.
∵PC+PD=MN,
∴PC+PD≥CD,MN≥CD.
∴当MN=CD时,MN有最小值.
∵PD⊥AB,
∴CD⊥AB.
∵ ABCD= BCAC,
∴CD= = = .
∴CD的最小值 .
∴MN的最小值为 .
所以答案是: .
【考点精析】本题主要考查了切线的性质定理的相关知识点,需要掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能正确解答此题.
练习册系列答案
相关题目