题目内容

【题目】如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:
①a﹣b+c>0;
②3a+b=0;
③b2=4a(c﹣n);
④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.
其中正确结论的个数是( )

A.1
B.2
C.3
D.4

【答案】C
【解析】∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,

∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.

∴当x=﹣1时,y>0,

即a﹣b+c>0,所以①正确;

∵抛物线的对称轴为直线x=﹣ =1,即b=﹣2a,

∴3a+b=3a﹣2a=a,所以②错误;

∵抛物线的顶点坐标为(1,n),

=n,

∴b2=4ac﹣4an=4a(c﹣n),所以③正确;

∵抛物线与直线y=n有一个公共点,

∴抛物线与直线y=n﹣1有2个公共点,

∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.

故答案为:C.

依据抛物线的对称性可知抛物线与x轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;由抛物线的对称轴公式可知可得到b=-2a,于是可对②进行判断;依据抛物线的顶点坐标公式可得到=n,则可对③进行判断;格局抛物线与直线y=n有一个公共点,可得到抛物线与直线y=n-1有2个公共点,于是可对④进行判断.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网