题目内容
如图,在△ABC中,∠C=90°,∠A和∠B的平分线相交于P点,又PE⊥AB于点E,若BC=2,AC=3,则AE•EB=______.
设Rt△ABC内切圆P的半径为r.
AB=
=
=
AE=AM=AC-r=3-r,BE=BN=BC-r=2-r
AB=AE+BE=(3-r)+(2-r)=5-2r
∴
=5-2r,即r=
∴AE•BE=(3-r)•(2-r)=(3-
)•(2-
)=
•
=
=3
故答案为3.
AB=
AC2+BC2 |
32+22 |
13 |
AE=AM=AC-r=3-r,BE=BN=BC-r=2-r
AB=AE+BE=(3-r)+(2-r)=5-2r
∴
13 |
5-
| ||
2 |
∴AE•BE=(3-r)•(2-r)=(3-
5-
| ||
2 |
5-
| ||
2 |
| ||
2 |
| ||
2 |
13-1 |
4 |
故答案为3.
练习册系列答案
相关题目