题目内容

【题目】在平面直角坐标系中,抛物线y= x2经过点A(x1 , y1)、C(x2 , y2),其中x1、x2是方程x2﹣2x﹣8的两根,且x1<x2 , 过点A的直线l与抛物线只有一个公共点

(1)求A、C两点的坐标;
(2)求直线l的解析式;
(3)如图2,点B是线段AC上的动点,若过点B作y轴的平行线BE与直线l相交于点E,与抛物线相交于点D,过点E作DC的平行线EF与直线AC相交于点F,求BF的长.

【答案】
(1)

解:∵x1、x2是方程x2﹣2x﹣8的两根,且x1<x2

∴x1=﹣2,x2=4,

∴A(﹣2,2),C(4,8);


(2)

解:设直线l的解析式为y=kx+b,

∵A(﹣2,2)在直线l上,

∴2=﹣2k+b,

∴b=2k+2,

∴直线l的解析式为y=kx+2k+2①,

∵抛物线y= x2②,

联立①②化简得,x2﹣2kx﹣4k﹣4=0,

∵直线l与抛物线只有一个公共点,

∴△=(2k)2﹣4(﹣4k﹣4)=4k2+16k+16=4(k2+4k+4)=4(k+2)2=0,

∴k=﹣2,

∴b=2k+2=﹣2,

∴直线l的解析式为y=﹣2x﹣2;


(3)

解:由(1)知,A(﹣2,2),C(4,8),

∴直线AC的解析式为y=x+4,

设点B(m,m+4),

∵(4.8),

∴BC= |m﹣4|= (4﹣m)

∵过点B作y轴的平行线BE与直线l相交于点E,与抛物线相交于点D,

∴D(m, m2),E(m,﹣2m﹣2),

∴BD=m+4﹣ m2,BE=m+4﹣(﹣2m﹣2)=3m+6,

∵DC∥EF,

∴△BDC∽△BEF,

∴BF=6


【解析】(1)解一元二次方程即可得出点A,C坐标;(2)先设出直线l的解析式,再联立抛物线解析式,用△=0,求出k的值,即可得出直线l的解析式;(3)设出点B的坐标,进而求出BC,再表示出点D,E的坐标,进而得出BD,BE,再判断出△BDC∽△BEF得出比例式建立方程即可求出BF.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网