题目内容
【题目】已知,如图所示,折叠矩形的一边,使点落在边的点处,如果.
(1)求FC的长;(2)求EC的长.
【答案】(1)FC=4;(2)EC=3.
【解析】(1)根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4;
(2)设EC=x,则DE=EF=8-x,在Rt△EFC中,根据勾股定理得x2+42=(8-x)2,然后解方程即可.
(1)∵四边形ABCD为矩形,
∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,
∵折叠矩形的一边AD,使点D落在BC边的点F处
∴AF=AD=10,DE=EF,
在Rt△ABF中,BF==6,
∴FC=BC-BF=4;
(2)设EC=x,则DE=8-x,EF=8-x,
在Rt△EFC中,
∵EC2+FC2=EF2,
∴x2+42=(8-x)2,
解得x=3
∴EC的长为3.
练习册系列答案
相关题目