题目内容
【题目】已知∠ADB,作图.
步骤1:以点D为圆心,适当长为半径画弧,分别交DA、DB于点M、N;再分别以点M、N为圆心,大于MN长为半径画弧交于点E,画射线DE.
步骤2:在DB上任取一点O,以点O为圆心,OD长为半径画半圆,分别交DA、DB、DE于点P、Q、C;
步骤3:连结PQ、OC.
则下列判断:①;②OC∥DA;③DP=PQ;④OC垂直平分PQ,其中正确的结论有( )
A. ①③④ B. ①②④ C. ②③④ D. ①②③④
【答案】B
【解析】
由DQ为直径可得出DA⊥PQ,结合OC⊥PQ可得出DA∥OC,结论②正确;由作图可知∠CDQ=∠PDC,进而可得出弧PC=弧CQ ,OC平分∠AOB,结论①④正确;由∠AOB的度数未知,不能得出DP=PQ,即结论③错误.综上即可得出结论.
解:∵DQ为直径,
∴∠DPQ=90°,DA⊥PQ.
∵OC⊥PQ,
∴DA∥OC,结论②正确;
由作图可知:∠CDQ=∠PDC,
∴弧PC=弧CQ,OC平分∠AOB,结论①④正确;
∵∠ADB的度数未知,∠PDQ和∠PQD互余,
∴∠PDQ不一定等于∠PQD,
∴DP不一定等于PQ,结论③错误.
综上所述:正确的结论有①②④.
故选:B.
【题目】第16届省运会在我市隆重举行,推动了我市各校体育活动如火如荼的开展,在某校射箭队的一次训练中,甲,乙两名运动员前5箭的平均成绩相同,教练将两人的成绩绘制成如下尚不完整的统计图表.
乙运动员成绩统计表(单位:环)
第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
8 | 10 | 8 | 6 |
(1)甲运动员前5箭射击成绩的众数是 环,中位数是 环;
(2)求乙运动员第5次的成绩;
(3)如果从中选择一个成绩稳定的运动员参加全市中学生比赛,你认为应选谁去?请说明理由.
【题目】某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.
甲种客车 | 乙种客车 | |
载客量(座/辆) | 60 | 45 |
租金(元/辆) | 550 | 450 |
(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;
(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元?