题目内容
【题目】如图,在平面直角坐标系中,直线与、轴分别交于、两点.点为线段的中点.过点作直线轴于点.
(1)直接写出的坐标;
(2)如图1,点是直线上的动点,连接、,线段在直线上运动,记为,点是轴上的动点,连接点、,当取最大时,求的最小值;
(3)如图2,在轴正半轴取点,使得,以为直角边在轴右侧作直角,,且,作的角平分线,将沿射线方向平移,点、,平移后的对应点分别记作、、,当的点恰好落在射线上时,连接,,将绕点沿顺时针方向旋转后得,在直线上是否存在点,使得为等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.
【答案】(1),(2),(3)存在,或
【解析】
(1)求出B,C两点坐标,利用中点坐标公式计算即可. (2)如图1中,作点B关于直线m的对称点,连接CB′,延长CB′交直线m于点P,此时PC-PB的值最大.求出直线CB′的解析式可得点P坐标,作PT∥BC,且PT=CD=5,作TE⊥AC于E,交BC于C′,此时PD′+D′C′+C′E的值最小. (3)如图2中,由题意易知,,.分两种情形:①当时,设.②当时,分别构建方程即可解决问题.
解:(1)∵直线与轴分别交于C、B两点,
∴B(0,6),C(-8,0),
∵CD=DB, ∴D(-4,3).
(2)如图1中,作点B关于直线m的对称点B′(-4,6),连接CB′,延长CB′交直线m于点P,此时PC-PB的值最大.
∵C(-8,0),B′(-4,6),
∴直线CB′的解析式为, ∴P(-2,9),
作PT∥BC,且PT=CD=5,作TE⊥AC于E,交BC于C′,
此时PD′+D′C′+C′E的值最小.
由题意点P向左平移4个单位,向下平移3个单位得到T,
∴T(-6,6), ∴PD′+D′C′+C′E=TC′+PT+C′E=PT+TE=5+6=11.
∴PD′+D′C′+C′E的最小值为11.
(3)如图2中,延长交BK′于J,设BK′交OC于
∵B′S′=BS=4,S′K′=SK=,BK′平分∠CBO,
所以,所以OR=3,tan∠OBR= ,
∵∠S′JK′=∠OBR=∠RBC, ∴tan∠S′JK′==,
∴,∵, ∴,所以为的中点,
, ∴,
由旋转的性质可知:,.
①当时,设,
,
解得, 所以.
②当时,同理则有,
整理得:, 解得 ,
所以,
又因为,,所以直线为,
此时在直线上,此时三角形不存在,故舍去.
综上所述,满足条件的点N的坐标为或.
【题目】某校举行了“文明在我身边”摄影比赛,已知每幅参赛作品成绩记为x分(60≤x≤100).校方从600幅参赛作品中随机抽取了部分步赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.
“文明在我身边”摄影比赛成绩统计表
分数段 | 频数 | 频率 |
60≤x<70 | 18 | 0.36 |
70≤x<80 | 17 | c |
80≤x<90 | a | 0.24 |
90≤x≤100 | b | 0.06 |
合计 | 1 |
根据以上信息解答下列问题:
(1)统计表中a= ,b= ,c= .
(2)补全数分布直方图;
(3)若80分以上的作品将被组织展评,试估计全校被展评作品数量是多少?