题目内容
【题目】如图,已知△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,联结EC.
(1)求证:四边形ADCE是平行四边形;
(2)当∠BAC=90°时,求证:四边形ADCE是菱形.
【答案】(1)见解析;(2)四边形ADCE是菱形,见解析.
【解析】
(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形;
(2)由∠BAC=90°,AD是边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,即证;
(1)证明:∵AE∥BC,DE∥AB,
∴四边形ABDE是平行四边形,
∴AE=BD,
∵AD是边BC上的中线,
∴BD=DC,
∴AE=DC,
又∵AE∥BC,
∴四边形ADCE是平行四边形,
(2)∵∠BAC=90°,AD是边BC上的中线.
∴AD=CD,
∵四边形ADCE是平行四边形,
∴四边形ADCE是菱形
练习册系列答案
相关题目