题目内容
【题目】如图所示,在矩形ABCD中,点E在AD上,EC平分∠BED.
(1)试判断△BEC是否为等腰三角形,并说明理由.
(2)若AB=1,∠ABE=45°,求BC的长.
(3)在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四边形?请说明理由.
【答案】(1)是等腰三角形,理由见详解;(2);(3)菱形,理由见详解.
【解析】
(1)易证∠BEC=∠BCE,从而判定△BCE是等腰三角形.
(2)由(1)知BC=BE,而BC是等腰直角△ABE的斜边,AB=BE,运用勾股定理可求.
(3)根据中心对称的性质,可知四边形BCFE是平行四边形,又BC=BE,得出BCFE是菱形.
解:(1)∵AD∥BC,
∴∠DEC=∠BCE,
∵∠DEC=∠BEC,
∴∠BEC=∠BCE,
∴△BCE是等腰三角形.
(2)∵在Rt△ABE中,∠ABE=45°,
∴∠AEB=∠ABE=45°,
∴AB=AE=1.
∴BE=,
∴BC=.
(3)如图,∵△FCE与△BEC关于CE的中点O成中心对称,
∴OB=OF,OE=OC,
∴四边形BCFE是平行四边形,
又∵BC=BE,
∴四边形BCFE是菱形.
练习册系列答案
相关题目