题目内容
【题目】当-2≤x≤1时,二次函数y=-(x-m)2+m2+1有最大值3,则实数m的值为( )
A. 2或-B. 或-C. 或-D. 或-
【答案】D
【解析】
求出二次函数对称轴为直线x=m,再分m<-2,-2≤m≤1,m>1三种情况,根据二次函数的增减性列方程求解即可.
二次函数y=-(x-m)2+m2+1,
可化为:y=-x2+2mx+1,
故二次函数的对称轴为直线x=m,
①m<-2时,x=-2时二次函数有最大值,
此时-(-2-m)2+m2+1=3,
解得m=-,与m<-2矛盾,故m值不存在;
②当-2≤m≤1时,x=m时,二次函数有最大值,
此时,m2+1=3,
解得m=-,m=(舍去);
③当m>1时,x=1时二次函数有最大值,
此时,-(1-m)2+m2+1=3,
解得m=.
综上所述,m的值为或-.
故选D.
【题目】某公司从2009年开始投入技术改造资金,经技术改进后,其产品的生产成本不断降低,具体数据如表:
年度 | 2009 | 2010 | 2011 | 2012 |
投入技改资金x(万元) | 2.5 | 3 | 4 | 4.5 |
产品成本y(万元/件) | 7.2 | 6 | 4.5 | 4 |
(1)试判断:从上表中的数据看出,y与x符合你学过的哪个函数模型?请说明理由,并写出它的解析式.
(2)按照上述函数模型,若2013年已投入技改资金5万元
①预计生产成本每件比2012年降低多少元?
②如果打算在2013年把每件产品的成本降低到3.2万元,则还需投入技改资金多少万元?
【题目】在不透明的袋子中有四张标有数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏。
小明画出树形图如下:
小华列出表格如下:
第一次 第二次 | 1 | 2 | 3 | 4 |
1 | (1,1) | (2,1) | (3,1) | (4,1) |
2 | (1,2) | (2,2) | ① | (4,2) |
3 | (1,3) | (2,3) | (3,3) | (4,3) |
4 | (1,4) | (2,4) | (3,4) | (4,4) |
回答下列问题:
(1)根据小明画出的树形图分析,他的游戏规则是:随机抽出一张卡片后 (填“放回”或“不放回”),再随机抽出一张卡片;
(2)根据小华的游戏规则,表格中①表示的有序数对为 ;
(3)规定两次抽到的数字之和为奇数的获胜,你认为淮获胜的可能性大?为什么?